The LifeCycle Model: Combining Particle Swarm Optimisation, Genetic Algorithms and HillClimbers

نویسندگان

  • Thiemo Krink
  • Morten Løvbjerg
چکیده

Adaptive search heuristics are known to be valuable in approximating solutions to hard search problems. However, these techniques are problem dependent. Inspired by the idea of life cycle stages found in nature, we introduce a hybrid approach called the LifeCycle model that simultaneously applies genetic algorithms (GAs), particle swarm optimisation (PSOs), and stochastic hill climbing to create a generally well-performing search heuristics. In the LifeCycle model, we consider candidate solutions and their fitness as individuals, which, based on their recent search progress, can decide to become either a GA individual, a particle of a PSO, or a single stochastic hill climber. First results from a comparison of our new approach with the single search algorithms indicate a generally good performance in numerical optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Mathematical Model in Cell Formation Problem with Consideration of Inventory and Backorder: Genetic and Particle Swarm Optimization Algorithms

Cell Formation (CF) is the initial step in the configuration of cell assembling frameworks. This paper proposes a new mathematical model for the CF problem considering aspects of production planning, namely inventory, backorder, and subcontracting. In this paper, for the first time, backorder is considered in cell formation problem. The main objective is to minimize the total fixed and variable...

متن کامل

An Energy Efficient Control Strategy for Induction Machines Based on Advanced Particle Swarm Optimisation Algorithms

This paper proposes an energy efficient control strategy for an induction machine (IM) based on two advanced particle swarm optimisation (PSO) algorithms. Two advanced PSO algorithms, known as the dynamic particle swarm optimisation (Dynamic PSO) and the chaos particle swarm optimisation (Chaos PSO) algorithms modify the algorithm parameters to improve the performance of the standard PSO algori...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Comparison of Genetic Algorithms and Particle Swarm Optimisation for Fermentation Feed Profile Determination

In recent years the area of Evolutionary Computation has come into its own. Two of the popular developed approaches are Genetic Algorithms and Particle Swarm Optimisation, both of which are used in optimisation problems. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare th...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002